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ABSTRACT: Lung cancer (LC) is a widespread cancer that is the cause
of the highest mortality rate accounting for 25% of all cancer deaths. To
date, most LC patients are diagnosed at the advanced stage owing to the
lack of obvious symptoms in the early stage and the limitations of current
clinical diagnostic techniques. Therefore, developing a high throughput
technique for early screening is of great importance. In this work, we
established an effective and rapid salivary metabolic analysis platform for
early LC diagnosis and combined metabolomics and transcriptomics to
reveal the metabolic fluctuations correlated to LC. Saliva samples were
collected from a total of 150 volunteers including 89 patients with early
LC, 11 patients with advanced LC, and 50 healthy controls. The
metabolic profiling of noninvasive samples was investigated on an ultralow
noise TELDI-MS platform. In addition, data normalization methods were
screened and assessed to overcome the MS signal variation caused by
individual difference for biomarker mining. For untargeted metabolic profiling of saliva samples, around 264 peaks could be reliably
detected in each sample. After multivariate analysis, 23 metabolites were sorted out and verified to be related to the dysfunction of
the amino acid and nucleotide metabolism in early LC. Notably, transcriptomic data from online TCGA repository were utilized to
support findings from the salivary metabolomics experiment, including the disorder of amino acid biosynthesis and amino acid
metabolism. Based on the verified differential metabolites, early LC patients could be clearly distinguished from healthy controls with
a sensitivity of 97.2% and a specificity of 92%. The ultralow noise TELDI-MS platform displayed satisfactory ability to explore
salivary metabolite information and discover potential biomarkers that may help develop a noninvasive screening tool for early LC.
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■ INTRODUCTION

Lung cancer (LC), one of the most prevalent types of cancer in
the world, is the cause of the highest mortality rate accounting
for 25% of all cancer deaths. The 5-year survival rate for LC
patients diagnosed at advanced stages is less than 15%, while
for those diagnosed at early stages, the survival rate can reach
70−80%, which highlights the importance of early diagnosis to
improve the overall survival.1 However, early screening of LC
remains a challenge due to the lack of obvious symptoms and
the limitations of current clinical diagnostic techniques.2,3 The
gold standard for tumor diagnosis is histopathology, which is
unsuitable for screening due to the invasive sampling
procedure. Currently, low-dose CT has become the first
choice for noninvasively screening LC in population because of
its high sensitivity, but its application has been hampered by
the low sensitivity among those who have never smoked, low
specificity (high false-positive rate), and high cost.4 Therefore,
rapid and effective techniques for the early screening of LC in
population with high sensitivity and specificity are in urgent
need.

Saliva is a noninvasive biological fluid containing trace
metals, metabolites, proteins, lipids, nucleic acid, and so forth.5

It has been confirmed that molecular changes in saliva can
reflect human diseases.6−8 Compared with commonly used
clinical samples like serum and tissue samples, the collection
process of saliva samples is noninvasive, less harmful, and more
accessible. Accordingly, saliva may become a promising
biological fluid for disease screening and health monitoring
in large population. Metabolomics is a new discipline following
genomics and proteomics. By monitoring metabolite differ-
ences in biological fluids or tissues, biomarkers for disease
screening, early warning, and classification can be discovered.9
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Recently, several works on LC metabolomics to search
potential biomarkers in human tissues and biofluids have
been reported.10−15 The rise of metabolomics provided new
insights for LC diagnosis.
The principal techniques used for salivary metabolomics

include nuclear magnetic resonance (NMR) spectroscopy, gas
chromatography−mass spectrometry (GC−MS), and liquid
chromatography−mass spectrometry (LC−MS).7,8,16 How-
ever, GC−MS and LC−MS required a long time for
chromatographic separation, whereas NMR is less sensitive
compared with MS techniques. These shortcomings may limit
the application of these techniques for large-scale disease
screening in population. Matrix-assisted laser desorption/
ionization mass spectrometry (MALDI-MS) has been applied
in the profiling of biological samples with acceptable selectivity
and high throughput, which provides the possibility in large-
scale clinical diagnosis.17 Nevertheless, the platform could be
severely suffered from the matrix interference in the low-
molecular weight (LMW) region, especially for the metabolite
with a molecular weight below 400 Da.18,19 Our previous work
has developed a tip-enhanced laser desorption/ionization
(TELDI) platform using fluorinated ethylene propylene
polymer (FEP)-coated vertical silicon nanowire (VSiNW)
arrays. The platform displayed a high sensitivity and ultralow
noise in LMW region.20,21 With the ultralow noise TELDI-MS
platform, salivary metabolites could be sensitively and reliably
profiled in a high throughput way.20

Another challenge in the salivary metabolic analysis is the
variation in secretion volume caused by different water
consumptions and other physiological and pathophysiological
factors, which inversely affects metabolite concentration.22

Metabolic data without suitable normalization cannot reflect
the underlying phenotype.23 Accordingly, it is necessary to
perform proper data normalization prior to statistical analysis
between participant groups.
In this study, saliva samples from patients diagnosed with

early LC and healthy volunteers were collected and non-
targeted salivary metabolomics was investigated using an
ultralow noise TELDI-MS platform. After acquiring MS

spectra data, a total of six different normalization techniques
were compared and screened for eliminating the external
interference for salivary metabolomics such as water intake. We
screened early LC-related differential metabolites in saliva
samples and then performed pathway-based enrichment
analysis based on these dysregulated metabolites. Besides,
RNASeq data from 35 pairs of LC tissues and adjacent tissues
were obtained and analyzed to verify the significantly altered
metabolic pathways. Furthermore, 23 identified significant
metabolites were defined as potential biomarker candidates for
early LC and further selected for discriminant analysis. Based
on the selected feature metabolites, orthogonal projections to
latent structures discriminant analysis (OPLS-DA), principal
component analysis (PCA), and cluster analysis can success-
fully discriminate early LC from normal control and advanced
LC. The artificial neural network (ANN) model indicated that
the group of early LC patients can be discriminated from the
healthy group with a sensitivity of 97.2% and specificity of 92%
using the panel of feature metabolites.

■ MATERIALS AND METHODS

Materials and Reagents

Single-crystal silicon wafers (p type, ⟨100⟩, 5−10 Ω·cm) were
purchased from Lijing Silicon Materials Co. (Quzhou, China).
Hydrofluoric acid (HF, 40%) and ethanol (EtOH) were
purchased from Sinopharm Chemical Reagent Co. (Shanghai,
China). Silver nitrate (AgNO3), aspartic acid, glutamine,
histidine, glutamic acid, proline, γ-aminobutyric acid, serine,
cytosine, uracil, creatinine, valine, pyroglutamic acid, ketoleu-
cine, adenine, imidazolepropionic acid, allysine, phenylglyox-
ylic acid, guanine, xanthine, 3-hydroxyanthranilic acid, gentisic
acid, N-acetylproline, arginine, N-acetyltaurine, N-acetyl-L-
glutamic acid, N-acetylhistidine, and glycyl-phenylalanine
standards were purchased from Aladdin Co. (Shanghai,
China). FEP preparation was purchased from Jinhua Yonghe
Fluorochemical Co. (Jinhua, China).

Table 1. Clinical Characteristics of the Subjects in This Study

discovery set validation set

characteristics HC early LC HC early LC advanced LC

cases 25 45 25 44 11
men, n (%) 10 (40.0) 16 (35.6) 9 (36.0) 15 (32.8) 7 (63.6)
age (median/range) 52.9 (12.3) 57.8 (13.4) 57.3 (15.8) 55.3 (10.9) 70.2 (6.9)
pathological diagnosis LUAD (n = 43), SCC

(n = 2)
LUAD (n = 41), SCLC
(n = 1), LCC (n = 2)

LUAD (n = 7), SCC (n = 2), SCLC (n = 1),
LDLC (n = 1)

stage I (n = 45) I (n = 44) III (n = 1), IV (n = 10)
TNM T1N0M0 (n = 45) T1N0M0 (n = 44) T4N0M1 (n = 4), T2N0M1 (n = 2), T2N2M1

(n = 2), T1N0M1 (n = 1), T2N2M0 (n = 1),
T3N0M1 (n = 1)

primary/secondary primary (n = 45) primary (n = 43),
secondary (n = 1)

primary (n = 11)

tumor size 0−1 cm (n = 23),
1−2 cm (n = 13),
2−3 cm (n = 9)

0−1 cm (n = 23),
1−2 cm (n = 12),
2−3 cm (n = 9)

2−3 cm (n = 1), 3−5 cm (n = 5), 5−7 cm
(n = 1), >7 cm (n = 4)

body mass index
(kg/m2, median/range)

23.72 (3.44) 22.46 (3.41) 23.59 (2.58) 23.34 (2.96) 21.46 (3.26)

smoking habit smokers
(n = 5, 20%)

smokers (n = 13, 28%) smokers
(n = 4, 16%)

smokers (n = 11, 25%) smokers (n = 6, 55%)

drinking habit drinkers
(n = 7, 28%)

drinkers (n = 14, 31%) drinkers
(n = 5, 20%)

drinkers (n = 13, 30%) drinkers (n = 7, 63%)

drug usage none none none
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Ultralow Noise TELDI Substrate Fabrication

The detailed fabrication procedure of FEP@VSiNWs has been
described in our previous work.20 Briefly, silicon wafer was cut
to 3 cm × 3 cm chips and then immersed in 0.02 M AgNO3
and 4.8 M HF mixed solution. After etching for 15 min, the
excess Ag catalyst was dissolved with dilute nitric acid (HNO3,
1:1 v/v). For initiator loading, 100 μL of FEP preparation was
applied onto the surface of the freshly etched chip. After 30
min, the excess initiator was removed on a spin coater to
obtain a uniform surface.

Collection and Pretreatment of Saliva Samples

Totally, 50 healthy volunteers and 100 LC patients (89
patients with early LC and 11 patients with advanced LC)
participated in the saliva collection project. The detailed
demographic information of participants is provided in Table
1. The saliva collection was implemented in Sir Run Run Shaw
Hospital of Zhejiang University between 8:30 and 10:30 am.
Before collection, all individuals were refrained from eating,
drinking, or smoking for at least 2 h. The detailed procedure of
saliva collection and preparation is described in the Supporting
Information. After removing insoluble residues and precipitat-
ing proteins in saliva, the final supernatant was diluted with
ultrapure water (1:4 v/v) and stored in the refrigerator at −80
°C until use. The Ethical Committee of the Sir Run Run Shaw
Hospital of Zhejiang University approved the protocol (no.
20201028-39), and the methods were carried out in
accordance with the approved guidelines.

Salivary Metabolite Profiling on the TELDI-MS Platform

The workflow of metabolic analysis of saliva samples is shown
in Figure 1. Prior to MS measurement, saliva samples were
thawed at 4 °C, the prepared FEP@VSiNWs substrate was cut
into 4 mm × 4 mm chips, and then, a 2 μL droplet of each
sample was deposited onto one chip, which was stuck onto a

custom-made plate with a carbon conductive adhesive tape.
Each custom-made plate can load 48 chips, and two plates can
be simultaneously inserted into the instrument for each test.
After drying, plates were inserted into the ultrafleXtreme
MALDI-tandem time-of-flight (TOF/TOF) instrument
(Bruker Daltonics Co.) equipped with a 355 nm Nd:YAG
laser beam. Mass spectra were obtained under the reflecting
negative-ion mode at the m/z range of 20−350 Da. The
voltages of ion source 1 and ion source 2 were set at 20.00 and
17.75 kV, the lens was set at 8.50 kV, and the reflector 1 and
reflector 2 were set at 21.10 and 10.70 kV, respectively. The
pulsed ion extraction was set at 120 ns, and the laser parameter
was set at 4_large. For each spectrum, laser shots were added
2000 times. All measurements were repeatedly performed
three times.

Data Normalization Methods Applied to Saliva

A total of six different normalization techniques were
investigated to eliminate extraneous factors-to-sample variation
and reduce the variation within each metabolite. In detail, the
data-driven techniques used here were normalization to
intensity of the highest peak signal (HSN), normalization to
MS “total useful signal”, linear baseline normalization, cyclic
loess normalization, probabilistic quotient normalization, and
cubic spline normalization. The last four normalization
methods were implemented in the statistical computing
language R using R 3.5.2 software.24 The detailed R code is
provided in the Supporting Information.

Data Handling and Statistical Analysis

The workflow of the statistical analysis of saliva samples is
presented in Figure S1. FlexAnalysis (Bruker Daltonics Co.)
was utilized for mass spectra acquisition and processing. The
selection of feature peaks (S/N > 3) was completed by
ClinproTools software (Bruker Daltonics Co.), and then, a list

Figure 1. Workflow of metabolic analysis of saliva samples from the early LC group and controls and establishment of the prediction model for
early LC diagnosis.
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of peaks were provided. After normalization, Student’s t-test
was performed using MATLAB software. Then, PCA and
cluster analysis were performed by MATLAB, and OPLS-DA
was completed by SIMCA software. Also, an ANN model with
a multilayer perception structure was built in MATLAB
software based on the peak data set of differential metabolites.
In the ANN model, early LC patients were set as positive,
while healthy volunteers were set as negative parts. The
training set occupied 70% of the data set, while 15% data were
used as the validation set and the other 15% data were set as
the testing set for evaluation of prediction accuracy. The data
set was composed of the averaged data of three replicates on
each saliva sample. The built model was then verified by the
validation set to obtain the sensitivity, specificity, and AUC
values. The impact pathway of early LC-related metabolites
was analyzed based on MetaboAnalyst.

Salivary Differential Metabolite Identification

MALDI-TOF/TOF MS/MS (tandem MS) and UPLC−MS/
MS were combined to identify the differential metabolites in

saliva samples. UPLC−MS/MS analysis of saliva samples
provided the exact molecular weights and main fragment
peaks, which were utilized to identify potential metabolic
biomarkers by searching the Human Metabolome Database
(http://www.hmdb.ca/). The identified metabolites were
further verified by purchased standard reagents through
comparing the exact mass and fragment profile obtained
from saliva samples and standard samples on MALDI-TOF/
TOF MS/MS. Detailed experimental parameters of UPLC−
MS analysis are provided in the Supporting Information.

RNA-Seq Analysis

The transcriptomics profiles of 35 LC tissues and 35 adjacent
tissues were obtained from the TCGA database (https://
cancergenome.nih.gov). To discover the changes in gene
pathways related to metabolism, statistical analysis was
performed using R 3.5.2 software. The differentially expressed
genes between indicated groups were screened out by the R
edgeR package. The false discovery rate (FDR) value is
calculated by the R function p.adjust based on the Benjamini−

Figure 2. (A−F) Peak ratio distributions of diluted saliva samples (1S, 0.75S, 0.5S, 0.25S, and 0.125S) presented using box plots after six
normalization methods. 1, 2, 3, 4, and 5 represent 1S, 0.75S, 0.5S, 0.25S, and 0.125S samples, respectively. The MS peaks detected in each sample
were compared with the original 1S sample. (G−L) Score plot for the OPLS-DA model built with the normalized data set; saliva samples collected
from 30 healthy controls and 30 early LC patients were utilized for the evaluation of discrimination results after six normalization techniques.
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Hochberg method, which can well control the false positive
rate and maintain the statistical detection power. Statistical
significance was defined as FDR < 0.05 and |log2 FC| > 1. Gene
ontology and KEGG pathway enrichment analysis were
performed by the DAVID database (https://david.ncifcrf.
gov/), and the heatmap of significant genes was made by the R
pheatmap package.

■ RESULTS AND DISCUSSION

Salivary Metabolic Profiling

The collected saliva cases (50 healthy controls [HC], 89 early
LC, and 11 advanced LC) were divided into two batches for
TELDI-MS data acquisition (Table 1). From the first batch of
saliva samples, 264 common peaks (S/N > 3) were observed
and further selected to characterize the repeatability of the
TELDI-MS platform in saliva detection. As shown in Figure
S2, MS spectra obtained from three groups appear significantly
different in the metabolic fingerprint region. This initial work
demonstrated that metabolic profiles acquired by TELDI-MS
contain underlying bioinformation that can differentiate HC,
early LC, and advanced LC.
Screening Normalization Methods for Salivary Metabolic
Analysis

Saliva is distinguished from many other biofluids used in
metabolomics studies because of the variation in solute
concentration affected by secreted volume. Therefore, proper
normalization is required to minimize the impact of external
factors such as water consumption on downstream analysis.
Currently, various normalization techniques such as creatinine
ratio, osmolality, and specific gravity are used to account for
the renal dilution, as urine samples face the same challenge in
metabolic analysis.25,26 However, creatinine-based corrections
are influenced by multiple factors such as age, race, physical
activity, and gender.27 The accuracy of osmolality measure-
ments is affected by insoluble particles and sample
heterogeneity.28 Normalization of metabolic data using specific
gravity would be problematic in the presence of large
molecules because specific gravity normalization is strongly
influenced by both the number of particles in the solution and
their size.26 Moreover, considering the practical application in
clinical screening, the data-driven normalization method seems
to be a better option for normalizing data sets from large-scale
experiments.24

In this study, six kinds of data-driven normalization methods
were screened to eliminate extraneous factors-to-sample
variation and reduce the variation within each metabolite. In-
batch and interbatch stability was presented in box plots by
calculating the peak ratios of replicated measurements after
normalization. Because there are few biological and physical
variations between replicated measurements, the log ratios
should be close to 0. Compared with other methods, HSN
results in worse stability in the variation of replicated
experiments (Figures S3 and S4). Besides, the correction
effect of different normalization methods on saliva dilution was
expressed as normalized peak ratios between diluted saliva
samples and the original 1S sample. As shown in Figure 2A−F,
cyclic loess, cubic spline, and probabilistic quotient normal-
ization produced relatively stable and reliable normalized peak
data during the dilution process. To statistically describe the
fluctuation of each normalized metabolic peak within the same
group, we calculated the peak ratios of each metabolite to the
group average value in 10 individual saliva samples. As shown

in Figures S5 and S6, there was little variation within each
metabolite after cyclic loess, cubic spline, and probabilistic
quotient normalization, no matter whether in the healthy or
early LC group. To evaluate the discrimination results of
different normalization methods, data acquired from 30
healthy volunteers and 30 patients diagnosed with early LC
were normalized before importing into OPLS-DA analysis. In
theory, the closer the R2Y and Q2 values are to 1, the more
credible the built model is. As shown in Figure 2G−L,
probabilistic quotient normalization provided the best
discrimination result with R2Y = 0.95 and Q2 = 0.75. Based
on all the abovementioned descriptions, the probabilistic
quotient normalization method was chosen for subsequent
salivary metabolic analysis.

Discovery and Validation of Abnormal Metabolic
Signatures in Early LC

To discover the differential metabolites in early LC patients,
Student’s t-test was performed. FDR correction was further
completed based on the Benjamini−Hochberg method. In this
study, metabolic feature peaks with VIP > 1, p < 0.05, and q <
0.05 were defined as significantly differential biomarker
candidates. Finally, a total of 24 metabolites were sorted out,
which were further verified using the validation cohort,
including 25 healthy volunteers and 44 patients diagnosed
with early LC. Among them, 23 metabolites were verified to be
significantly differential in both cohorts and the same change
trends of these biomarker candidates were observed in the
validation set (Table S1). The detailed identification
information of the verified metabolic biomarker candidates is
described in Tables S2 and S3, and the representative mass
spectra of saliva samples collected from two groups in the
metabolic fingerprint region are presented in Figure S7
(Supporting Information). Compared with the HC group,
GABA, cytosine, uracil, creatinine, pyroglutamic acid,
ketoleucine, adenine, imidazolepropionic acid, allysine, gua-
nine, 3-hydroxyanthranilic acid, gentisic acid, N-acetylproline,
and N-acetylhistidine were upregulated in early LC patients,
whereas serine, proline, valine, phenylglyoxylic acid, xanthine,
arginine, N-acetyl-L-glutamic acid, N-acetyltaurine, and glycyl-
phenylalanine were downregulated. The downregulation of
amino acids including serine, arginine, valine, and proline and
the upregulation of downstream metabolites of amino acid
metabolism including ketoleucine, N-acetylhistidine, imidazo-
lepropionic acid, N-acetylproline, allysine, gentisic acid, 3-
hydroxyanthranilic acid, γ-aminobutyric acid, and pyroglutamic
acid were observed in the early LC group, which were
consistent with previous studies on LC.10,11,14,29−31 This may
be a consequence of protein malnutrition and the increase of
amino acid demand caused by tumor growth.10 Besides, several
compounds associated with purine and pyrimidine biosynthesis
were significantly increased in the early LC group compared
with healthy controls, including guanine, adenine, cytosine,
and uracil.32,33 The decreased levels of xanthine were assumed
to correspond to the disorder of purine metabolism, which has
been confirmed in numerous earlier studies on LC.14 In the
present study, creatinine levels were significantly higher in
early LC patients than in controls, which has been observed in
urine samples.34 In the human body, creatine is synthesized
from methionine, glycine, and arginine and further reacts to
produce creatinine. Therefore, the increase in creatinine levels
may be related to the upregulated amino acid metabolism.
Glycyl-phenylalanine is an incomplete breakdown product of
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Figure 3. Pathway map of the differential metabolites in early LC. The blue and red arrows represent the downregulation and upregulation of
metabolites in early LC, respectively.

Figure 4. Globally disturbed metabolic pathways in the LC group. (A) Impact pathway analysis of early LC-related differential metabolites based
on MetaboAnalyst. The significance of the metabolic disorder was presented in the circle size and color depth. (B) KEGG pathway enrichment
analysis of differential genes extracted from LC tissues and adjacent normal tissues. (C) Heatmap analysis of significant genes in two groups.
Significant genes used here are evolved in the related metabolic pathway, including protein digestion and absorption, biosynthesis of amino acid,
salivary secretion, arginine and proline metabolism, alanine/aspartate/glutamate metabolism, glycine/serine/threonine metabolism.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00310
J. Proteome Res. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00310?fig=fig4&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


protein digestion or protein catabolism; its downregulation
may be related to the protein malnutrition of cancer reported
in the literature.10 Phenylglyoxylic acid belongs to the class of
organic compounds known as benzoyl derivatives. The
decreased levels of phenylglyoxylic acid may be a consequence
of the reported downregulation of benzoic acid.14 N-
acetyltaurine is formed by the acetylation of taurine; its
reduction may be related to the downregulation of taurine
reported in the serum studies.35 Acetyl-L-glutamic acid is
deeply involved in the metabolism of glutamate and its
significant downregulation was observed in the present study.
Besides, a metabolic pathway map further verified the
perturbations of biomarker candidates and correlated these
feature metabolites to the disturbed metabolic pathways in the
early LC group (Figure 3). The relevant metabolic pathway of
the potential differential metabolites in early LC patients is
provided in Table S4 Supporting Information.

Globally Disturbed Metabolic Pathways in the LC Group

To investigate the globally disturbed metabolic pathways in
early LC patients, pathway analysis was completed based on
the verified differential metabolites using MetaboAnalyst. As
depicted in Figure 4A, the significant disorders of the amino
acid metabolism were observed in the early LC group,
including arginine and proline metabolism, arginine biosyn-
thesis, valine, leucine and isoleucine biosynthesis, and so on.
Moreover, the nucleotide metabolism was uncovered to be
significantly disturbed including purine metabolism and
aminoacyl-tRNA biosynthesis. It has been convinced that the
active energy and purine metabolism sustained the uncon-
trolled growth of tumor cells.36,37 The abnormal levels of
purine compounds indicated metabolic disorders for a high
proliferation rate of cancer cells, which was consistent with
previous studies.12,13 The significant change in the aminoacyl

Figure 5. Multivariate analysis for discrimination between early LC patients and control individuals. (A,B) Score plots for the PCA model built
with the normalized intensities of 23 selected metabolites in the discovery and validation sets, respectively. (C,D) OPLS-DA results based on the
potential biomarkers. (C) In the discovery set, explained variance R2Y = 0.848 and predicted variance Q2 = 0.81. (D) In the validation set, R2Y = 0.8
and Q2 = 0.774. (E,F) Cluster analysis results in the discovery and validation sets, respectively. Intensities of metabolites used here were normalized
to [0,1]. (G,H) RGB figure clearly discriminate the two groups in the discovery set and validation set, respectively. The samples from healthy
volunteers are shown in “blue”, whereas those from the early LC group are shown in “green”.
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transfer RNA biosynthesis pathway hinted at the dysregulation
in mRNA translation for protein synthesis.6,38

To discover the molecular mechanisms during LC patho-
genesis, RNASeq data of 35 patients diagnosed with LC and 35
nontumor adjacent normal lung tissues were obtained from the
publicly available database. As expected, the transcriptome
obviously segregated LC samples and other normal samples
and the volcano plot indicated that 16,572 upregulated genes
and 2853 downregulated genes were differentially expressed in
the LC group, suggesting that there exists a dramatic molecular
change during LC pathogenesis (Figure S8). Next, we further
conducted the KEGG functional enrichment analysis to
investigate the function of differentially expressed genes
correlated with the LC (Figure 4B). The results displayed
that among many other altered pathways, the amino acid
metabolism was also affected such as protein digestion and
absorption, tyrosine metabolism, biosynthesis of amino acids,
arginine and proline metabolism, alanine, aspartate, and
glutamate metabolism, glycine, serine, and threonine metab-
olism. Intriguingly, the disturbed biosynthesis of amino acids
and amino acid metabolism observed in transcriptomics have
been reflected in salivary metabolomics in this study.
Additionally, these genes were also found to be enriched in
salivary secretion, which confirms the importance and
prospectiveness of saliva diagnosis in LC prediction.
Furthermore, a heatmap was performed based on the
differential genes evolved in metabolic pathways discussed
above, clear separate clusters indicated that LC tissues can be
well distinguished from controls (Figure 4C). The bar plot of
disturbed metabolic pathways related to the LC phenotype
based on KEGG pathway analysis is provided in Figure S9A,
indicating the upregulation of the amino acid metabolism.
What is more, top significant pathways in BP, CC, and MF of
gene ontology analysis are shown in the bubble plot (Figure
S9B).

Multivariate Analysis for Discrimination between Early LC
Patients and Control Individuals

As shown in Figures S10−S13, 23 metabolites that are
significantly differential in the early LC were defined as
potential biomarkers and then evaluated by receiver operating
characteristic (ROC) curves in the discovery and validation
sets. In order to demonstrate the feasibility of this platform in
early LC diagnosis, a panel consisting of these differential
metabolites was established and applied for subsequent
discriminant analysis. As shown in Figure 5A−D, early LC
patients and healthy controls can be successfully discriminated
in both discovery and validation sets for unsupervised PCA or
supervised OPLS-DA. Cluster analysis was also employed to
evaluate the diagnostic performance, and the cluster tree
indicates that saliva samples from two groups appear in
separate clusters with only one exception (healthy volunteer
no. 5 was misclassified as an early LC patient) in the discovery
set and two exceptions (healthy volunteer no. 23 was
misclassified as an early LC patient and early LC patient no.
61 was misclassified as healthy control) in the validation set,
respectively (Figure 5E,F). Besides, the digital red green blue
(RGB) color map was created using three significant peaks.
The color was composed by normalized R (m/z 134.0665), G
(m/z 153.0178), and B (m/z 221.1198) values of each
individual using MATLAB software. It suggests that the one
shown in “blue” may be healthy, whereas the one shown in
“green” has a high chance of being an early LC patient; this

phenomenon can be observed in both the discovery set and the
verification set (Figure 5G,H). The visual RGB figure helps us
directly observe the disease information hidden in saliva
samples, which could be conveniently used for the presentation
of the disease diagnosis results in population screening.
Diagnosis of Early LC with the ANN Model

The 23 feature peaks were further set as the input layer of
artificial neural networks to generate a prediction model, which
was further validated to estimate the error rates using the
normalized data collected from the verification cohort. As
shown in Figure 6, the area under the ROC curve (AUC) of

the potential biomarker panel was 0.986 for early LC diagnosis
in the validation set. The sensitivity and specificity of the
prediction model in the verification cohort were 97.2 and 92%,
respectively (Figure 6). The training parameters of the built
model are provided in the Supporting Information (Figure
S14). Furthermore, the potential biomarker panel was also
applied to distinguish patients with advanced-stage LC from
healthy controls or early LC patients. With the established
model, advanced LC patients can be successfully separated
from healthy controls with only one exception (Figure S15,
Supporting Information). Also, the three groups can be
successfully discriminated under supervised OPLS-DA (Figure
S16, Supporting Information). With the well-trained ANN
model, we envisioned that this TELDI-MS platform might
return automatic, real-time results of diagnosis. In addition, we
estimated the consumed time to complete a whole workflow
using a batch of samples containing 96 saliva cases. The
workflow includes sample preparation, TELDI MS data
acquisition, and metabolic analysis. Because two steps of
centrifugation are required to remove insoluble residues and
precipitate proteins in saliva samples, the whole pretreatment
process for the batch of samples takes 30 min. In TELDI-MS
analysis, raw MS data of the batch of samples can be collected
within 5 min with the automatic mode (Figure S17A,
Supporting Information). Next, the raw spectrum of each
saliva sample was converted into a .txt file within a few
seconds. A self-written MATLAB script was utilized to
immediately read the mass peaks of all saliva samples. After
importing all mass peaks into R software, normalized metabolic
features were extracted and further put into the established
ANN model to provide nearly real-time prediction (Figure
S17B, Supporting Information). As a result, the entire process

Figure 6. ANN model with prediction capability for early LC
diagnosis. (A) Confusion matrix of the built prediction model using
the normalized data collected from the verification cohort. (B) ROC
curve of the potential biomarker panel for early LC diagnosis in the
validation set.
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from sample preparation to the final diagnosis can be achieved
within 50 min for a batch of samples containing 96 cases
(Figure S17C, Supporting Information). These results gave us
confidence that the established model based on the ultralow
noise TELDI-MS platform has satisfactory diagnostic perform-
ance for clinical early screening of LC.

Possible Future Relevance for Clinical Practice

With the aid of the ultralow noise TELDI-MS platform,
metabolic fingerprints of saliva samples were obtained in
seconds using the FEP@VSiNW substrate, which showed great
potentials in large-scale disease screening. The results of
salivary metabolic analysis could potentially provide valuable
complementary information for distinguishing early LC
patients from healthy controls. Noninvasive sampling proce-
dure, high sensitivity and specificity combined with rapid
detection, and analysis in high throughput make the
established platform possible for early screening of LC
among the population, which may make some contributions
to the improvement of overall survival. In the future, further
possible applications might include mass screening of high-risk
population such as heavy smokers. Besides, this salivary
metabolic analysis platform might be suitable for screening
of many other diseases such as various tumors, the metabolic
fluctuations of which have been discovered in saliva
samples.6−8 More importantly, salivary metabolomics may
provide a new insight for the diagnosis and prognosis of
COVID-19, which is an emergent, worldwide public health
concern during the pandemic.39,40 Several works have
confirmed the metabolic fluctuations in COVID-19 patients
based on plasma or serum samples.41−43 By analyzing the
salivary metabolite profiles of COVID-19 patients at different
disease progression stages, potential metabolic markers related
to the phenotype may be discovered to help predict disease
progression, recovery, and the therapeutic effects of clinical
treatments.40,44 Therefore, TELDI-MS, as a high-throughput
salivary metabolite profiling platform, holds potentials in
shedding light on finding disturbed metabolic pathways in
COVID-19 patients and sorting out metabolic biomarkers with
the clinical diagnostic value.

■ CONCLUSIONS

Overall, we demonstrated that an effective and rapid platform
for salivary metabolic analysis using the FEP@VSiNW chip can
be successfully applied to the noninvasive early diagnosis of
LC. To minimize the external factors for salivary metab-
olomics, a total of six normalization techniques were
investigated and compared in the metabolic analysis of saliva
samples. Together with the good recognition of the salivary
metabolic profiling for early LC patients, analysis of tran-
scriptomic data from the online TCGA repository further
verified the phenomenon found in salivary metabolomics that
the metabolic status of early LC patients was significantly
disturbed. The significantly differential metabolites were
globally depicted, and a prediction model was built and
verified for the early LC diagnosis with satisfactory
discrimination performance. Overall, the high throughput MS
platform for salivary metabolite profiling opened up a new
possibility for early screening of LC.
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